
Mobile Application Framework Custom Native Plugin �1

Mobile	Applica,on	Framework	Custom	Na,ve	
Plugin	

Version	5.0	
		
MobileSmith,	Inc.	

June	2,	2017 

 MobileSmith, Inc.

Mobile Application Framework Custom Native Plugin �2

Table	of	Contents	

1. Revision	History	 4	
2. Overview	 5	
3. Common	Na,ve	Plugin	Informa,on	 5	

3.1. NPI Configuration 5

3.2. Class Name Configuration 5

3.3. Multiple NPIs 5
4. Android	Na,ve	Plugin	Informa,on	6	

4.1. Native Plugin Requirement 6

4.2. System Frameworks 6

4.3. Supported Tools 7

4.4. Design and Implementation Constraints 7

4.5. Code Requirements 7

4.6. Android Fragments 7

4.7. Android Plugin Deployment Information 8

4.8. EventBus Library 8

4.9. Android 6.0 Permissions 8

4.10. Android Caveats 9

4.10.1. Multiple AAR Files 9

4.10.2. ActionBar Title 9

4.10.3. Kotlin Language Support 9

4.10.4. Nested Views 9
5. iOS	Na,ve	Plugin	Informa,on	 10	

5.1. iOS Dynamic Framework 10

5.1.1. Dynamic Framework Deployment 10

5.2. iOS Static Library Native Plugin 11

 MobileSmith, Inc.

Mobile Application Framework Custom Native Plugin �3

5.2.1. iOS NPI Zip File 11

5.2.2. NPI View Controller 11

5.2.3. NPI Bundle 12

5.3. Fly-out Menu Integration 12

5.4. UIAppearance 13

5.5. Code Requirements 13

5.6. System Frameworks 14

5.7. iOS Caveats 16

5.7.1. iOS File extended resources 16

 MobileSmith, Inc.

Mobile Application Framework Custom Native Plugin �4

1. Revision	History	

Name Date Reason	for	Changes Version

Initial 04/16/14 Initial Document 1.0

Update 01/02/15 Updated for Android Studio 2.0

Update 04/05/15 Updated for Gradle Build Script 3.0

Update 06/24/15 Update for Support for Activities 3.1

Update 10/08/15 Updated for the MobileSmith 4.0
Release and merged the iOS

Documentation into this
document

4.0

Android 6.0
Update

03/29/16 Updated for Android 6.0
documentation.

4.1

iOS Dynamic
Framework Update

06/02/17 Updated for iOS Swift Dynamic
Framework support

5.0

 MobileSmith, Inc.

Mobile Application Framework Custom Native Plugin �5

2. Overview	

2.1. Purpose	

	 This	document	describes	a	way	to	inject	a	custom	Na>ve	Plugin	(NPI)	into	the	Android	and	iOS	
Mobile	Applica>on	Framework	(MAF)	PlaMorms.	The	NPI	is	a	standalone/self	contained	part	of	an	
applica>on	and	will	allow	you	a	way	to	incorporate	your	own	func>onality	into	your	Apps	through	the	
MAF	PlaMorms.	NPI’s	should	be	wriQen	in	the	na>ve	code	for	the	plaMorm:	

	 NPI’s	give	the	developer	the	power	to	create	custom	sec>ons	of	the	Applica>on,	u>lizing	tools	
such	as	the	Layout	Editor/Interface	Builder	in	order	to	define	UI	layouts	and	incorpora>ng	different	
backend	API’s	that	are	not	currently	supported	by	the	plaMorm.	

3. Common	Na,ve	Plugin	Informa,on	

3.1. NPI Configuration

	 In	the	app	design	UI,	the	designer	can	enter	in	arbitrary	key/value	pairs	to	associate	with	the	
NPI.	This	will	be	converted	into	a	JSON	file	with	a	single	object	and	key/value	pairs	for	each	field,	and	
the	JSON	data	will	be	provided	to	the	NPI	at	run>me.		All	of	the	values	are	passed	to	the	NPI’s	as	string	
JSON	data,	data	conversion	will	need	to	be	done	by	the	NPI	(string	to	boolean,	string	to	integer,	etc.).	

3.2. Class Name Configuration

	 The	only	required	key	in	the	configura>on	JSON	is	the	classname,	which	is	the	main	entry	point	
into	the	Na>ve	Plugin	(Fragment	for	Android	and	UIViewController/UINaviga>onViewController	for	
iOS):	

3.3. Multiple NPIs

	 If	a	single	app	has	mul>ple	NPIs,	care	should	be	taken	since	both	NPIs	will	be	linked	into	the	
final	app.	So	any	shared	code	should	only	be	defined	in	one	of	the	NPIs	to	prevent	linker	errors.	

OS Platform Language

Android Java

iOS • Swift
• Objective C

Platform JSON Key Classname Example

Android FragmentClassName com.example.ui.NpiFragment

iOS - Objective C ViewControllerClassName ViewControllerClassName

iOS - Swift ViewControllerClassName Module.ViewControllerClassName

 MobileSmith, Inc.

Mobile Application Framework Custom Native Plugin �6

4. Android	Na,ve	Plugin	Informa,on	

4.1. Native Plugin Requirement
	 	
	 For	the	NPI,	the	following	informa>on	is	needed:	

• Android	Library	Project	packaged	into	an	Android	Archive	File	(AAR).	

4.2. System Frameworks

	 The	Android	MAF	PlaMorm	builds	towards	the	following	versions	of	the	Android	PlaMorm:	

	 Android	PlaMorm	App	builds	include	the	following	libraries:	

Android Build Information Version

Compile SDK Version 25

Build Tools Version 25.0.2

Target API Version 23

Minimum SDK Version 16

JDK Version 1.5

Library Information Version Gradle Compile Information

Android Support Compat
Library

7:25.1 com.android.support:appcompat-v7:25.1.+

MultiDex 1.0.0 com.android.support:multidex:1.0.0

RX Java 0.20.7 • com.netflix.rxjava:rxjava-core:0.20.7
• com.netflix.rxjava:rxjava-android:0.20.7

RX Permissions 0.6.1 com.tbruyelle.rxpermissions:rxpermissions:0.6.1

Google Play Services 10.2.0 • com.google.android.gms:play-services-location:10.2.0
• com.google.android.gms:play-services-maps:10.2.0
• com.google.android.gms:play-services-analytics:10.2.0

DiskLRUCache Library 2.0.2 com.jakewharton:disklrucache:2.0.2

HttpMine 4.2 org.apache.httpcomponents:httpmime:4.2

Flurry Analytics 3.4.0 Provided by JAR File

Google Cloud Messaging

Picasso Library 2.5.2 com.squareup.picasso:picasso:2.5.2

 MobileSmith, Inc.

Mobile Application Framework Custom Native Plugin �7

	 The	NPI	must	provide	any	3rd	party	libraries	in	the	deployed	AAR	file.	

4.3. Supported Tools

We	support	the	following	tools	for	NPI	development:	

4.4. Design and Implementation Constraints

	 Android	MAF	PlaMorm	will	provide	a	Fragment	container	for	3rd	party	NPI	User	Interface	
elements.	These	Fragment	containers	will	allow	the	PlaMorm	the	ability	to	embed	the	NPI’s	inside	the	
current	UI	without	changing	the	underlying	code.	

4.5. Code Requirements

The	Android	NPI	should	abide	by	the	following:	

• Anything	going	against	the	Play	Store	guidelines	is	prohibited	in	third	party	code.	
• Excep>ons	are	not	handled	outside	of	the	custom	Fragment:	if	the	custom	Fragment	does	
not	handle	the	excep>on	the	app	will	crash.	

4.6. Android Fragments

	 Android	Fragments	(from	the	Android	Support	Library	v4)	should	be	used	as	a	UI	Container	for	
NPI’s,	it	represents	a	por>on	of	the	UI	in	an	Android	Ac>vity.	This	will	allow	the	Android	MAF	
Framework	to	control	most	of	the	screen	that	has	the	NPI.	The	Fragment	approach	will	allow	the	
Custom	Na>ve	Plugin	to	have	its	own	lifecycle,	receive	its	own	input	events,	and	the	ability	to	swap	
out	its	own	Fragments	without	the	knowledge	of	the	MAF	PlaMorm.	

Spring Android 1.0.1 • org.springframework.android:spring-android-core:
1.0.1.RELEASE

• org.springframework.android:spring-android-rest-
template:1.0.1.RELEASE

Scribe (OAuth Library) 1.3.7 org.scribe:scribe:1.3.7

GreenRobot EventBus 2.4.0 de.greenrobot:eventbus:2.4.0

Library Information Version Gradle Compile Information

Tool Information

Android Studio 2.3 Integrated Development Environment

Roboelectric Unit Test Unit Testing Framework

Espresso 2.0 UI Test Tool Automated UI Testing Tool

 MobileSmith, Inc.

Mobile Application Framework Custom Native Plugin �8

	 The	Android	MAF	PlaMorm	will	pass	in	an	Android	Bundle	to	the	Fragment	that	includes	the	
following:	

• JSON	Configura>on	String	(Bundle	key	=	“json_config")	-	this	will	contain	the	JSON	provided	in	
the	JSON	Configura>on	File.	

• UI	Fragment	Container	Id	(Bundle	key	=	“container_view_id”)	-	this	should	be	used	to	replace	the	
current	fragment	in	the	PlaMorm:	

final	FragmentTransac>on	fragmentTransac>on	=		ac>vity.getSupportFragmentManager().beginTransac>on();	
fragmentTransac>on.replace(container_view_id,	fragment);	
if	(addToBackStack)	{	
	 fragmentTransac>on.addToBackStack(null);	
}	
fragmentTransac>on.commit();	

4.7. Android Plugin Deployment Information

	 The	Custom	Na>ve	Plugin	should	be	package	in	an	AAR	file	with	the	structure	of	an	Android	
library	as	described	in	the	Android	Build	System	Documenta>on	(hQp://tools.android.com/tech-docs/
new-build-system/aar-format)	

4.8. EventBus Library

	 The	Android	MAF	plaMorm	u>lizes	a	publish/subscribe	event	bus	for	communica>ons	between	
the	plaMorm	components.	This	event	bus	can	be	u>lized	by	the	NPI	for	NPI	to	NPI	communica>on	and	
in	the	future	NPI	to	MAF/MAF	to	NPI	communica>on.	For	more	informa>on	about	the	EventBus,	see:	

hQps://github.com/greenrobot/EventBus	

4.9. Android 6.0 Permissions

	 With	the	update	to	Android	6.0,	developers	are	now	required	to	ask	at	run>me	for	dangerous	
permissions.	 The	 MobileSmith	 Android	 PlaMorm	 u>lizes	 the	 Rx	 Permissions	 library	 to	 handle	 the	
run>me	permissions.	

hQp://developer.android.com/training/permissions/reques>ng.html	
hQps://github.com/tbruyelle/RxPermissions	

	 For	 Rx	 Permissions,	 we	 do	 not	 u>lize	 the	 lambda	 func>onality,	 instead	 we	 use	 regular	
callbacks.	The	NPI	Sample	Code	includes	Rx	Permissions	func>onality. 

 MobileSmith, Inc.

http://tools.android.com/tech-docs/new-build-system/aar-format
http://tools.android.com/tech-docs/new-build-system/aar-format
https://github.com/greenrobot/EventBus
http://developer.android.com/training/permissions/requesting.html
https://github.com/tbruyelle/RxPermissions

Mobile Application Framework Custom Native Plugin �9

4.10. Android Caveats

The	following	are	caveats	with	Na>ve	Plugins	on	Android:	

4.10.1. Multiple AAR Files

	 Currently	only	one	AAR	file	per	Na>ve	Plugin	AppBlock	is	supported,	if	mul>ple	
AAR	files	are	needed,	the	user	should	create	one	Na>ve	Plugin	AppBlock	for	each	AAR	
file.	

4.10.2. ActionBar Title

	 Changing	the	Ac>onBar	Title	is	currently	not	supported	in	the	NPI	framework.	
This	func>onality	may	be	provided	at	a	later	date.	

4.10.3. Kotlin Language Support

	 Kotlin	is	not	currently	supported	in	the	plaMorm	but	there	are	plans	to	support	
the	language	in	the	future.	

4.10.4. Nested Views

	 Nested	views	can	cause	some	latency	issues	with	the	NPI’s	inside	the	
MobileSmith	plaMorm,	since	the	NPI	resides	several	layers	deep.	See	the	following	App	
View	Hierarchy: 

 MobileSmith, Inc.

Android App View Hierarchy

FrameLayout

FrameLayout

DrawerLayout

Module Layout

Module Container

Flyout Menu

RelativeLayout

NPI Layouts Module View Content

Mobile Application Framework Custom Native Plugin �10

5. iOS	Na,ve	Plugin	Informa,on	

	 The	iOS	MobileSmith	plaMorm	primarily	works	by	transi>oning	to	various	UIViewController	
subclasses.	One	might	represent	a	list	of	data	configured	in	the	MobileSmith	website,	another	might	
have	an	e-mail	feedback	form,	etc.	This	gives	applica>ons	built	in	the	MobileSmith	plaMorm	a	lot	of	
built-in	func>onality	they	could	u>lize,	but	some>mes	an	applica>on	has	needs	for	some	very	specific	
func>onality.	

	 NPIs	allow	app	designers	to	include	a	custom	UIViewController	instance	in	their	applica>on	
that	can	be	selected	and	navigated	to	similar	to	the	other	internal	UIViewController	subclasses.	
Currently	the	“scope”	of	an	NPI	is	limited	to	what	can	be	accomplished	by	a	UIViewController	
implementa>on.	An	NPI	cannot	modify	the	Info.plist	file	of	the	app,	change	the	applica>on	icon,	or	
modify	the	Xcode	linker	flags,	for	example.	

	 There	are	two	primary	components	that	make	up	an	NPI:	a	ZIP	file	that	contains	all	third-party	
code	and	resources	needed	by	the	device,	and	a	configura>on	JSON	file	that	is	setup	in	the	
MobileSmith	PlaMorm	with	configura>on	informa>on	that	could	be	u>lized	by	the	NPI	code.	

	 For	the	iOS	PlaMorm,	there	are	two	ways	a	developer	can	build	NPI’s:	

• Dynamic	Frameworks	(Swir	and/or	Objec>ve	C)	
• Sta>c	Libraries	(Objec>ve	C	only)	

5.1. iOS Dynamic Framework

	 Swir	3.+	NPI	support	is	provided	through	the	use	of	dynamic	frameworks,	more	informa>on	
on	iOS	frameworks	can	be	found	at:	

hQps://developer.apple.com	

	 The	same	View	Controller	methodology	that	sta>c	library	NPIs	u>lize	applies	to	dynamic	
frameworks,	there	needs	to	be	an	ini>al	UIViewController	that	the	plaMorm	will	ini>alize.		That	view	
controller	can	implement	the	following	op>onal	method	if	it	needs	some	op>ons	from	the	JSON		
Configura>on	data:	
		

5.1.1. Dynamic Framework Deployment

	 The	Dynamic	Framework	should	be	zipped	up	for	uploading	to	the	plaMorm,	if	the	framework	
relies	on	mul>ple	frameworks	that	are	not	already	included	in	the	plaMorm	then	those	frameworks	
can	be	added	to	the	same	zip	file	as	the	NPI.	

Method

public func configure(_ json: NSDictionary!) Optional method for passing in the JSON
configuration data.

 MobileSmith, Inc.

https://developer.apple.com

Mobile Application Framework Custom Native Plugin �11

5.2. iOS Static Library Native Plugin

5.2.1. iOS NPI Zip File

	 The	zip	file	has	only	one	required	component:	a	library	(.a)	file	containing	the	code	for	the	
custom	UIViewController	(or	UINaviga>onController)	subclass.	In	addi>on	it	could	contain	any	number	
of	resource	bundles	or	addi>onal	library	files	that	are	required.	If	there	are	mul>ple	items	that	need	
to	be	included	in	the	zip,	be	sure	to	select	the	items	in	the	Finder,	right-click	and	select	“Compress	#	
items…”	instead	of	compressing	their	common	parent	directory.	

5.2.2. NPI View Controller

	 The	main	entry	point	for	an	NPI	is	the	main	view	controller.	Whenever	the	NPI	is	selected	in	
the	MobileSmith	applica>on,	this	is	the	view	controller	that	will	be	presented.	There	are	two	primary	
types	of	NPIs	that	are	supported,	depending	on	their	superclass:	

• UIViewController-based	NPI.	This	will	typically	be	added	to	one	of	the	UINaviga>onControllers	in	
the	MobileSmith	applica>on.	The	only	excep>on	would	be	if	the	NPI	is	included	in	the	tab	bar	of	
the	applica>on,	in	which	case	it	will	be	displayed	without	any	UINaviga>onController.	This	is	the	
recommended	type	of	NPI.	A	UIViewController-based	NPI	should	not	override	the	standard	
“Back”	buQon	in	its	enclosing	UINaviga>onController	

• UINaviga>onController-based	NPI:	If	the	NPI	view	controller	is	a	UINaviga>onController	subclass,	
then	it	will	typically	be	presented	modally.	The	only	excep>on	would	be	if	the	NPI	is	included	in	
the	tab	bar	of	the	applica>on.	A	UINaviga>onController-based	NPI	should	not	be	used	in	the	fly-
out	menu,	since	the	fly-out	hide/show	buQon	is	part	of	a	MobileSmith	naviga>on	controller.	A	
UINaviga>onController-based	NPI	is	required	to	implement	a	“Close”	buQon	if	needed	to	dismiss	
the	NPI.	A	UINaviga>onController-based	NPI	should	only	be	used	if	the	NPI	needs	full	control	
over	the	naviga>on	controller,	or	if	the	NPI	is	going	to	be	selected	from	the	tab	bar	and	a	
naviga>on	controller	is	needed.	

The	view	controller	class	should	implement	one	of	the	following	ini>aliza>on	methods:	

	 The	view	controller	class	could	also	op>onally	implement	the	following	method:	

Method Information

+ (id)npiWithJSON:(NSDictionary *)json; This class method would be appropriate if the NPI is
loaded from a UIStoryboard or if some additional
logic needed to be done before the NPI knew which
UIViewController subclass it wanted to return. It is
given the configuration JSON data as an
NSDictionary.

- (instancetype)initWithJSON:(NSDictionary
*)json;

This instance method is the most commonly used,
and assumes that the NPI is either initialized from a
XIB file or entirely in code.

 MobileSmith, Inc.

Mobile Application Framework Custom Native Plugin �12

5.2.3. NPI Bundle

	 This	is	op>onal,	and	mul>ple	bundles	could	be	provided.	All	resources	(including	xib	and	
storyboard	files)	should	be	included	in	this	bundle.	When	crea>ng	a	new	bundle	target	in	Xcode,	you	
need	to	create	a	Mac	OSX	bundle	target	and	then	manually	change	the	plaMorm	from	OSX	to	iOS.	If	
you	are	having	trouble	loading	PNG	files	from	the	bundle,	try	removing	the	COMBINE_HIDPI_IMAGES	
sewng	for	the	bundle	target.	

	 Although	the	bundle	target	will	ini>ally	have	source	code	associated	with	it,	the	bundles	
provided	for	use	as	a	MobileSmith	NPI	should	not	have	ANY	code.	You	can	verify	this	by	examining	the	
bundle	and	making	sure	that	there	is	not	an	executable	file	in	the	bundle	with	the	same	name	as	the	
bundle	(e.g.,	Foo.bundle/Foo)	

5.3. Fly-out Menu Integration

	 If	the	app	designer	wants	to	link	an	NPI	in	a	fly-out	menu,	then	there	are	a	couple	extra	
considera>ons:	

	 The	NPI	should	be	a	UIViewController-based	NPI.	It	will	automa>cally	be	added	in	a	
UINaviga>onController	that	has	the	fly-out	toggle	buQon	(i.e.,	a	buQon	with	a	“hamburger”	icon)	

	 There	are	some	cases	where	the	NPI	coder	does	not	want	to	be	embedded	into	a	MobileSmith	
UINaviga>onController.	If	this	is	the	case,	then	there	is	some	addi>onal	work	on	the	part	of	the	NPI	to	
interact	with	the	applica>on	fly-out	menu:	

• The	NPI	could	use	the	“btn_flyout”	image	in	the	main	applica>on	bundle,	which	represents	the	
fly-out	“hamburger”	icon	

• The	ac>on	to	toggle	the	fly-out	menu	is	@selector(toggleFlyoutMenu:).	The	NPI	could	either	
provide	a	nil	target	on	a	control	that	uses	that	selector,	or	use	–[UIResponder	
targetWithAc>on:withSender:]	to	determine	what	object	it	should	send	the	ac>on	to.	

• The	JSON	configura>on	provided	to	the	NPI	should	include	a	“iOSNavPreference”	key	with	a	
“never”	value	to	indicate	to	the	MobileSmith	code	that	it	should	not	be	placed	inside	of	a	
naviga>on	controller.	Currently	this	preference	is	only	applicable	when	the	NPI	is	accessed	from	
the	fly-out	menu,	and	behavior	is	undefined	if	this	sewng	is	used	in	an	NPI	that	is	not	accessed	
from	the	fly-out	menu.	

• Whenever	the	user	navigates	to	the	NPI	to	the	fly-out	menu,	the	MobileSmith	code	will	aQempt	
to	instan>ate	a	new	instance	of	the	NPI.	If	this	is	not	desired,	the	NPI	could	instan>ate	itself	as	a	
singleton.  

Method Information

 +(void)setupWithJSON:(NSDictionary *)json Called on app launch, before the NPI view controller
is initialized. This could be useful for downloading
additional data that the NPI needs before being
displayed.

 MobileSmith, Inc.

Mobile Application Framework Custom Native Plugin �13

5.4. UIAppearance

	 MobileSmith	u>lizes	Apple’s	UIAppearance	protocol	for	much	of	its	look-and-feel.	This	
automa>cally	sets	default	colors	for	some	UI	elements	(e.g.,	naviga>on	bar	background	color	and	
text).	If	no	colors	are	set	for	these	proper>es	in	the	NPI,	then	they	will	automa>cally	get	the	colors	
specified	for	the	applica>on	on	the	MobileSmith	website.		These	proper>es	include:	

• UINaviga>onBar	text	and	background	colors	

• UISearchBar	text	and	background	color	

5.5. Code Requirements

The	iOS	NPI	should	abide	by	the	following:	

• NPI	library	files	should	be	compiled	for	arm64,	armv7,	and	armv7s	architectures.	A	universal	
library	file	(device	and	simulator)	could	also	be	created,	but	might	need	to	be	compiled	
manually.	Arer	genera>ng	a	device.a	and	simulator.a	library	file,	a	universal	version	could	be	
created	with	“lipo	–create	device.a	simulator.a	–output	universal.a”	command	in	the	Terminal.	

• Anything	going	against	the	AppStore	guidelines	is	prohibited	in	third	party	code.	

• Method	swizzling	(changing	the	implementa>on	of	an	outside	class	at	run>me)	is	prohibited	in	
third	party	code.	

• Excep>ons	are	not	handled	outside	of	the	custom	view	controller:	if	it	does	not	handle	an	
excep>on	the	app	will	not	handle	it	and	will	result	in	a	crash.	

• Currently	on	iPad	only	landscape	mode	and	only	modal	launching	of	the	custom	view	controller	
are	supported.	

• Currently	on	iPhone	only	portrait	mode	is	supported.	

• iPad	NPIs	cannot	currently	use	UISplitViewControllers	

• NPIs	should	target	iOS	9	and	work	on	iOS	9	and	iOS	10	

• If	building	a	sta>c	library,	many	common	filenames	are	already	in	use	by	the	core	MobileSmith	
code.	NPI	filenames	and	classes	should	have	a	common	prefix	to	dis>nguish	itself,	e.g.	
XYZMainViewController.m	vs.	MainViewController.m	

• If	an	NPI	modally	presents	a	view	controller,	then	it	is	responsible	for	dismissing	the	view	
controller	

• If	the	bulk	of	the	NPI	is	contained	in	a	modally	presented	view,	then	the	NPI	view	controller	
should	s>ll	contain	meaningful	content	since	it	is	what	will	be	visible	once	the	modal	view	
controller	is	dismissed.	

 MobileSmith, Inc.

Mobile Application Framework Custom Native Plugin �14

• No	files	or	folders	contained	in	the	NPI	zip	should	have	resource	forks	aQached	to	them.	The	
xaQr	command-line	tool	could	be	used	to	verify.	(See	“File	extended	resources”	sec>on	in	the	
iOS	Caveats)	

5.6. System Frameworks

	 Below	is	a	lis>ng	of	system	frameworks	that	we	currently	link	against.	If	a	na>ve	plugin	requires	
a	system	framework	that	is	not	listed	here,	then	we	will	need	to	include	that	framework	in	our	project	
before	we	can	support	that	na>ve	plugin:	

Framework

AVFoundation.framework

AdSupport.framework

AssetsLibrary.framework

CFNetwork.framework

CoreData.framework

CoreGraphics.framework

CoreLocation.framework

CoreMedia.framework

CoreVideo.framework

EventKit.framework

EventKitUI.framework

Foundation.framework

ImageIO.framework

MapKit.framework

MediaPlayer.framework

MessageUI.framework

MobileCoreServices.framework

PBXFrameworksBuildPhase

QuartzCore.framework

SystemConfiguration.framework

UIKit.framework

ibiconv.dylib

 MobileSmith, Inc.

Mobile Application Framework Custom Native Plugin �15

	 In	addi>on,	we	also	use	the	following	sta>c	third-party	libraries.	If	an	NPI	needs	to	use	one	of	
these,	MobileSmith	should	be	contacted	to	make	sure	we	are	using	the	same	version	of	that	library.	If	
they	aQempt	to	include	it	as	part	of	their	uploaded	resources	zip,	it	could	result	in	a	build	failure:	

libxml2.dylib

libz.dylib

Framework

Library

libFlurryAnalytics.a

libGoogleAnalytics.a

libGoogleConversionTracking.a

libzbar.a

 MobileSmith, Inc.

Mobile Application Framework Custom Native Plugin �16

5.7. iOS Caveats

5.7.1. iOS File extended resources

	 One	poten>al	issue	in	an	NPI	that	could	cause	an	app	store	submission	to	fail	is	the	existence	
of	extended	file	resources.	These	resources	cannot	always	be	represented	in	a	zip	file,	and	will	
some>mes	be	extracted	into	a	__MACOS	directory	with	individual	files	for	the	extended	resources.	
This	causes	an	issue	with	code	signing,	since	those	are	seen	as	separate	files	that	were	added	arer	
code	signing,	causing	app	verifica>ons	to	fail.	To	prevent	this	issue,	the	contents	of	an	NPI	zip	file	
should	not	contain	any	extended	resources.	

	 To	view	extended	resources,	the	xaQr	tool	can	be	used.	Before	zipping	up	the	NPI,	if	you	
navigate	in	the	Terminal	to	the	directory	with	the	sta>c	library	and/or	bundles,	execute	the	following	
command	to	recursively	list	all	extended	resources	for	all	folders	and	files	in	that	directory:	
	 find	.	–exec	xaQr	–l	“{}”	\;	

	 One	of	the	most	common	aQributes	that	are	accidentally	added	to	files	is	the	
com.apple.quaran>ne	aQribute.	This	is	typically	added	to	files	that	are	downloaded	from	an	e-mail	
client	or	browser	and	indicate	to	the	Mac	opera>ng	system	that	the	zip	file	may	contain	executable	
code	that	has	not	been	approved	by	the	downloader	to	execute.	If	you	ever	download	an	applica>on	
and	get	a	pop-up	from	Apple	asking	if	you	are	sure	you	want	to	launch	an	applica>on	that	was	
downloaded	from	the	internet,	that	is	the	work	of	the	com.apple.quaran>ne	aQribute.	To	recursively	
remove	that	aQribute	from	all	files/folders	in	the	directory,	execute	the	following	command	in	the	
Terminal:	
	 find	.	–exec	xaQr	–d	com.apple.quaran>ne	“{}”	\;	

	 Note	that	this	could	show	a	lot	of	warning	messages	when	it	aQempts	to	remove	that	aQribute	
from	files	that	do	not	actually	have	the	aQribute,	but	that	is	to	be	expected.	Arer	running	that	
command	for	each	unique	extended	aQribute	that	was	found	(if	any	other	than	com.apple.quaran>ne	
are	found),	run	the	
	 find	.	–exec	xaQr	–l	“{}”	\;	
Command	again	to	ensure	that	all	extended	aQributes	are	removed,	and	then	zip	up	the	NPI	for	use	in	
the	MobileSmith	applica>on.	

 MobileSmith, Inc.

